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Summary

1. There is a growing number of empirical reports of environmental change simultaneously

influencing population dynamics, life history and quantitative characters. We do not have a well-

developed understanding of links between the dynamics of these quantities.

2. Insight into the joint dynamics of populations, quantitative characters and life history can be

gained by deriving a model that allows the calculation of fundamental quantities that underpin

population ecology, evolutionary biology and life history. The parameterization and analysis of

such a model for a specific system can be used to predict how a population will respond to environ-

mental change.

3. Age-stage-structured models can be constructed from character-demography associations that

describe age-specific relationships between the character and: (i) survival; (ii) fertility; (iii) onto-

genetic development of the character among survivors; and (iv) the distribution of reproductive

allocation.

4. These models can be used to calculate a wide range of useful biological quantities including

population growth and structure; terms in the Price equation including selection differentials;

estimates of biometric heritabilities; and life history descriptors including generation time. We

showcase the method through parameterization of a model using data from a well-studied popula-

tion of Soay sheepOvis aries.

5. Perturbation analysis is used to investigate how the quantities listed in summary point 4 change

as each parameter in each character-demography function is altered.

6. A wide range of joint dynamics of life history, quantitative characters and population growth

can be generated in response to changes in different character-demography associations; we argue

this explains the diversity of observations on the consequences of environmental change from

studies of free-living populations.

7. The approach we describe has the potential to explain within and between species patterns in

quantitative characters, life history and population dynamics.

Key-words: age-stage structure, integral projection models, ontogenetic development, reproduc-

tive allocation, Soay sheep

Introduction

Life history descriptors such as generation time and mean

lifetime reproductive success, ecological variables including

population growth rate and structure, and evolutionary

quantities like heritability, selection differentials and pheno-

typic and genetic variances provide the foundations on which

population biology is built. A growing number of studies

report joint change in various pairs of these quantities when

populations experience environmental change (Hairston

et al. 2005). This begs the question, how are these quantities

related, and should we expect them to change simultaneously

when populations are perturbed? Theoretical and empirical

understanding of relationships between fundamental quanti-

ties underpinning population biology would greatly extend

our understanding of the dynamics of populations, life histo-

ries and quantitative characters. Such understanding could
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also help explain patterns in the data biologists have collected

on within and between species patterns in fitness-related

phenotypic characters and population dynamics. In this

paper we show how a demographic model can be derived and

parameterized in a way that allows many fundamental quan-

tities in population ecology, evolutionary biology and life his-

tory theory to be calculated. Once such a model is

constructed associations between these fundamental quanti-

ties can be examined through analysis of the model. Using

data from a population of Soay sheep Ovis aries we demon-

strate the ease in which such a model can be constructed,

parameterized and analysed.

The fields of population ecology and evolutionary biology

often appear poorly integrated although both study different

aspects of the same distribution. Evolutionary questions are

usually couched in terms of understanding distributions of

quantitative characters and why means and variances of

these distributions change with time. In contrast, population

ecologists have traditionally been uninterested in the means

and variances of these distributions but instead focus on how

population size fluctuates. For individual characters, like

bodymass, the total size (or weight) of the character distribu-

tion constructed from a population at a point in time is the

population size at that time. If the entire character distribu-

tion could be tracked the dynamics of the character and the

dynamics of population size could be jointly investigated

within a singlemodel (Easterling, Ellner&Dixon 2000). Such

a framework could also be used to gain insight into the

dynamics of life history variables (Caswell 2001). Being able

to simultaneously investigate the dynamics of populations,

phenotypic characters, estimates of their additive genetic

variances, and life history parameters, would provide a useful

step in identifying linkages between population ecology, evo-

lutionary biology and life history theory.

Unfortunately simply tracking the dynamics of a character

distribution is not sufficient to link the fields of population

ecology, life history and character evolution. This is because

researchers in the different fields are often interested in the

contribution of specific processes to observed patterns of

change. The processes that evolutionary biologists are inter-

ested in include selection, phenotypic plasticity, ontogenetic

development and maternal effects because these are the dom-

inant drivers in altering the means and variances of heritable

character distributions (Falconer 1960; Coulson & Tuljapur-

kar 2008). In contrast, population ecologists are interested in

factors like density-dependence and environmental variation

that often strongly influence birth and death rates, as these

determine whether the size of the distribution shrinks or

grows with time (Caswell 2001; Tuljapurkar 1990). Any

framework that explicitly permits linkages between evolu-

tionary biology and population ecology consequently needs

to incorporate the key processes that interest each field.

Stage- and age-stage structured populationmodels provide

a powerful framework in which to investigate the dynamics

of deterministic (Lefkovitch 1965); stochastic (Tuljapurkar

1990); and density- and frequency dependent populations

(Caswell 2001). Structured models can also be used to

identify evolutionarily stable life history strategies within

the adaptive dynamics framework (Childs et al. 2003, 2004;

Metcalf et al. 2008). A wide array of methods exist to analyse

structuredmodels ( Caswell 2001; Tuljapurkar 1990; Coulson

et al. 2008). Despite the remarkable utility of structured

models, they have not previously been formulated in a man-

ner that permits the calculation of many key quantities in

evolutionary biology including selection differentials and

character heritability. In this paper we demonstrate that four

classes of fundamental relationship need to be characterized

and combined to allow the construction of structured models

from which it is straightforward to calculate: (i) the distribu-

tion of modelled characters; (ii) the covariance between par-

ent and offspring characters that is often interpreted as an

estimate of additive genetic variance; (iii) the biometric heri-

tability of the character (Jacquard 1983) calculated from the

parent-offspring phenotypic covariance; (iv) terms in the age-

structured Price equation including selection differentials; (v)

the strength of selection on characters via lifetime reproduc-

tive success; and (vi) descriptors of the life history including

generation length. In addition, the structured models we con-

struct can be analysed using existing methods in population

ecology and adaptive dynamics. Because a range of quanti-

ties of interest to population ecologists, life history theorists

and evolutionary ecologists can be calculated from a single

model we can analyse the model to gain insight into how the

different quantities are associated.We demonstrate this using

body mass and life history data from a long-term, individual-

based study of Soay sheep (Clutton-Brock & Pemberton

2004). We demonstrate that the joint dynamics of quantita-

tive characters, life history descriptors and populations can

take a very wide variety of forms, and that predictions of the

population consequences of environmental change can only

be understood through investigation of the consequences of

perturbation to the four classes of character-demography

functions described above.

Materials andmethods

THEORY

Our aim in this section is to develop general theory linking integral

projection models (IPMs), the Price equation, generation length and

(biometric) heritability estimates (Jacquard 1983) from mother-

daughter regressions. In the derivations below we allow character-

demography functions to vary with time. In the empirical example

that follows we keep things deliberately simple and parameterize a

model for a constant environment. We work with number density

distributions that describe the number of individuals within an age

class with respect to character values. The area under this distribution

is the number of individuals within the age class. We refer to this area

as the ‘size’ of the distribution. The sum of the sizes of these distribu-

tions across all age classes is the population size.

Integral projectionmodels

Age-stage-structured matrix models provide a general mathematical

description (based on accounting identities) of the dynamics of pop-

ulation size and structure (Lefkovitch 1965). Both age and stage
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(or stages in the multivariate cases) are discrete. For continuous char-

acters like body size, stage classes are constructed by binning charac-

ters into discrete stage classes. If age-specific transition rates between

stages are known, the population growth rate and change in stage

structure over a time step is exactly described. These transition rates

are: (i) stage-specific survival; (ii) transition rates of survivors among

stage classes; (iii) stage-specific fertility rates; and (iv) the stage classes

into which offspring born to parents in a specific age-stage-class are

recruited (defined here as reproductive allocation). All of these rates

may vary with age as well as stage, and in stochastic models they may

also vary with time (Tuljapurkar 1990; Ellner &Rees 2006).

The IPMs are built on functions that describe the associations

between a character (or characters in the multivariate case) and sur-

vival, fertility, development of the character among survivors and the

probability density distribution of offspring character values given

parental characters (Easterling et al. 2000). In populations where dis-

persal rates can be ignored these are the four fundamental relation-

ships connecting characters to demographic rates; they can vary with

age and in variable environments with time (Ellner & Rees 2006).

Relationships between a character and immigration and emigrations

rates need to be considered in cases where dispersal rates cannot be

ignored. IPMs are models that describe how number-density is added

to, removed from and transformedwithin a uni- ormultivariate char-

acter number density distribution. IPMs can accommodate both con-

tinuous and discrete traits (Ellner & Rees 2006) and are consequently

mathematically more general than matrix models, although results

for IPMs carry over naturally to matrix models (Easterling et al.

2000; Ellner & Rees 2006). The use of discrete time requires that age

be counted in discrete intervals.

Assume (1) that a population is sufficiently large so demographic

stochasticity can be ignored and (2) that relationships exist between a

character z and survival S(a,t,z¢), fertilityR(a,t,z¢), ontogenetic devel-
opment of the character among survivors G(a,t,z | z¢), and offspring

character values D(a,t,z | z¢) within each age class a and at each time

t. Additionally, assume that viability selection occurs before ontoge-

netic development among survivors, and fertility selection (concep-

tion) occurs before reproductive allocation determines offspring

character values. Models could be formulated such that growth

occurs before survival, fertility, and reproductive allocation but such

models are not discussed further here. Denote the number density of

individuals at age a and character value n(a,t,z). The dynamics of this

number density distribution from t to t + 1 can be written,

nð1; tþ 1; zÞ ¼
X
a

Z
dz0Dða; t; z j z0ÞRða; t; z0Þnða; t; z0Þ; eqn 1a

nðaþ 1; tþ 1; zÞ ¼
Z

dz0Gða; t; z j z0ÞSða; t; z0Þnða; t; z0Þ; a � 1

eqn 1b

~nð1; tþ 1Þ ¼ ð ~Dða; tÞ ~Rða; tÞÞ � ~nð1; tþ 1Þ; eqn 1c

~nðaþ 1; tþ 1Þ ¼ ð ~Gða; tÞ ~Sða; tÞÞ � ~nða; tþ 1Þ; a � 1: eqn 1d

Definitions of variables are provided in Table 1. Recruitment, or

fertility, is defined as the number of offspring born between t and

t + 1 that survive to t + 1. Eqn (1a) gives the number density distri-

bution of character values among recruits to be added to the popula-

tion at time t + 1 as a function of parental character values at time t.

The number density distribution of offspring character values pro-

duced by each age-class is generated in two steps: a recruitment func-

tion R(a,t,z¢) produces a number density distribution of parental

character values that is then transformed into the number density dis-

tribution of offspring character values by the probability density

functionD(a,t,z | z¢). The integral is taken over all parental character

values. To obtain the population level number density distribution of

newborns, we sum the age-specific number density distributions of

Table 1.Definition of variables used in the text

Parameter Definition

a Age

t Time

z,z¢ Character value

�x The populationmean of variable x

r2(x) Population variance of x

D �ZðtÞ Change in charactermean between t and t+1: �Zðtþ 1Þ � �ZðtÞ
Dr2(Z(t)) Change in the variance of the character between t and t+1

w(t) Mean fitness defined as the sum ofmean survival andmean recruitment: �SðtÞ þ �RðtÞ
k Predictedmean fitness at equilibrium population structure

p(a,t) Proportion of the population in age-class a at time t

n(a,t,z),n(a,t) Continuous, discrete distribution of character values in age-class a at time t

S(a,t,z),S(a,t) Continuous function, matrix, describing expected survival

R(a,t,z),R(a,t) Continuous function, matrix, describing expected recruitment

G(a,t,z|z¢),G(a,t) Continuous function, matrix, describing ontogenetic development kernel

D(a,t,z|z¢),D(a,t) Continuous function, matrix, describing the reproductive allocation kernel

C,W Ageingmatrices

z Vector of midpoint character values for each age-character class

T Generation time

h2 Character heritability

Va Additive genetic variance of the character

M(a,t + a ) 1,z| z¢) Density of offspring with character values z produced by parents with character

value z¢ when they were aged 1 at time t

ML Lifetime reproductive success

N(t) Female population size in year t
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offspring characters across all ages. As well as contributing to the off-

spring number density distribution, each n(a,t,z¢) will produce the dis-
tribution n(a + 1,t + 1,z). Eqn (1b) describes how first a survival

function S(a,t,z¢) removes number density from n(a,t,z¢) before a

probability density function G(a,t,z | z¢) describes how ontogenetic

development transforms density among survivors.

Eqns (1a) and (1b) describe the dynamics of a continuous charac-

ter, z. However, it is useful to approximate IPMs in discrete matrix

form to aid their analysis (Easterling et al. 2000). When approxi-

mated in this way we can write the kernels D(a,t,z | z¢) and

R(a,t,z | z¢) and the functions S(a,t,z¢) and R(a,t,z¢) as matrices (see

‘Numerical Implementation’ below).Matrices are denoted with bold-

face font: for example G(a,t). Integral operators provide a powerful

notation that covers both kernels and their matrix approximations.

We denote integral operators using tildes, for example ~Gða; tÞ. For
a continuous character the integral operator is a kernel; for a discrete

character the integral operator is a matrix. Eqn (1c) rewrites (1a) in

integral operator notation; eqn (1d) similarly rewrites (1b). These

integral operators are similar to those used in standard IPM theory

(Ellner & Rees 2006) but in our development it is vital to keep sepa-

rate the effects of survival (in ~S), ontogenetic change (in ~G), recruit-

ment (in ~R) and reproductive allocation (in ~D) as this allows

calculation of selection differentials and the biometric heritability of

the character. In Table 2 we describe key number density distribu-

tions using each notation.

The IPMs and their matrix approximations can be used to predict

population size and structure one time step ahead. IPMs also predict

change in means and variances of the character number density

distribution over a time step as a function of selection and other

processes captured by the age-structured Price equation (Coulson &

Tuljapurkar 2008). In stochastic environments the fundamental

functions used to construct IPMs vary with time, and the population

structure and population growth rate change from one time step to

the next. However, the population converges to a stationary number

density distribution of population structures and growth rates

(a stochastic equilibrium) (Tuljapurkar 1990). Means and variances

of the character number density distribution, as well as the popula-

tion growth rate and structure, converge to equilibrium values in

deterministic models, and to a stationary distribution in stochastic

models.

From IPMs to characters and Price

The eqns (1a) and (1b) have been used to study population dynamics

and the evolution of optimal character values (Childs et al. 2003).

In this section we are interested in character dynamics rather than

population numbers, and we first show that the same equations pro-

vide the tools for tracking moments of character number density dis-

tributions. The mean trait value �Zða; tÞ among individuals of age a at

time t is just

�Zða; tÞ ¼
R
dz z nða; t; zÞR
dz nða; t; zÞ ; eqn 2

an equation that applies also if the character is vector-valued – that is

multivariate. The mth moment of the character value (if scalar, or of

a component, if vector) is

�Zmða; tÞ ¼
R
dz zm nða; t; zÞR
dz nða; t; zÞ ; eqn 3

and the variance is then

r2ðZða; tÞÞ ¼ �Z2ða; tÞ � ð �Zða; tÞÞ2:

If z1,z2 are the components of a vector valued phenotypic charac-

ter, we can track the phenotypic covariance via the jointmoments

�Z1
�Z2ða; tÞ ¼

R
dz1 dz2 z1 z2 nða; t; z1; z2ÞR

dz1 dz2 nða; t; z1; z2Þ
: eqn 4

From here on we focus on a scalar character but the analyses

extend to vector-valued characters along the lines of the above equa-

tion.

As with character values, we can compute the averages of survival

rates,

�Sða; tÞ ¼
R
d zSða; t; zÞnða; t; zÞR

dz nða; t; zÞ ;

and similarly averages of ontogenetic change, fertility, and so on.

Even more usefully, we can compute covariances between fitness

components and characters. Thus for survival rate and character

value,

CovðSZÞða; tÞ ¼ SZða; tÞ � �Sða; tÞ �Zða; tÞ; eqn 5

Readers familiar with the analysis of selection on characters will

recognize the covariance in (5) as the selection coefficient on the char-

acter due to differential survival among individuals aged a at time t.

Clearly, the dynamics in (1a) and (1b) make it possible to track selec-

tion acting via survival, growth, reproduction and so on. They are

therefore a direct link to the fundamental frameworks used to under-

stand the dynamics of phenotypic characters – the Price equation

Table 2.Description of distributions andmoments of distributions in continuous and discretized forms

# Continuous Discrete Description

i n(a,t,z) n(t) Character distribution at t

ii S(a,t,z)n(a,t,z) S(t)n(t) Character distribution after viability selection

iii R(a,t,z)n(a,t,z) R(t)n(t) Character distribution after fertility selection

iv �dz¢G(t,a,z¢)S(t,a,z¢)n(a,t,z¢) G(t)S(t)n(t) Character distribution after ontogenetic development

v �dz¢D(t,a,z|z¢)R(t,a,z¢)n(a,t,z¢) D(t)R(t)n(t) Character distribution after reproductive allocation

vi n(a,t + 1,z) n(t + 1) Character distribution at t + 1R
dz z nða;t;zÞR
dz nða;t;zÞ

P
z�nðtÞP
nðtÞ Mean of the distribution of z

R
dz zm nða;t;zÞR
dz nða;t;zÞ

P
zm�nðtÞP
nðtÞ mthmoment of the distribution of z
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(Price 1970) and the breeders equation (Falconer 1960). These frame-

works are both formed in terms of selection differentials.

The age-structured Price equation describes change in the popula-

tion level mean of a number density character distribution between

time t and t + 1 (Coulson & Tuljapurkar 2008). An equation for

change in the variance has also been derived (S. Tuljapurkar & T.

Coulson, unpublished). Terms in the Price equation describe how

survival, recruitment, ontogenetic development and reproductive

allocation alter the mean of number density distributions within and

between each age-class (Table 2). In addition to these contributions

we need two additional quantities to write a form of the age-struc-

tured Price equation (Coulson & Tuljapurkar 2008). First, the nor-

malized density at character value z of individuals at age a at time t is

pða; t; z0Þ ¼ nða; t; z0ÞP
a½
R
dz nða; t; z0Þ� ;

and the fraction of individuals at age a at time t is

pða; tÞ ¼
Z

dz pða; t; z0Þ:

Second, the growth rate of the population between t and t + 1 is

wðtÞ ¼
X
a

Z
d z0fRða; t; z0Þpða; t; z0Þg þ fSða; t; z0Þpða; t; z0Þg

� �
:

eqn 6

In the following equations we denote means and variances of the

number density distributions across all ages as �Zi and r2(Zi) for i ¼
i,…,iv (Table 2). Change in themean,D �ZðtÞ (Coulson& Tuljapurkar

2008), and change in the variance, Dr2(Z(t)) (S. Tuljapurkar &

T. Coulson, unpublished), of the character number density distribu-

tion can then be written,

D�ZðtÞ ¼
X
a

pðaÞ�Sða; tÞ
wðtÞ ð�Z2ða; tÞ� �Z1ða; tÞÞþ ð�Z4ða; tÞ� �Z2ða; tÞÞ½ �

þ
X
a

pðaÞ�Rða; tÞ
wðtÞ ð�Z3ða; tÞ� �Z1ða; tÞÞþ ð�Z5ða; tÞ� �Z3ða; tÞÞ½ �

þ
Xx�1
a

ðDpða; tÞ�Z1ða; tÞÞ� pðx; tÞ�Z1ða; tÞ

þ
X
a

pðaÞ�Rða; tÞ�Z1ða; tÞ
�wðtÞ :

eqn 7

and

Dr2ðZðtÞÞ ¼
X
a

pðaÞ�Sða; tÞ
wðtÞ

�
ðr2ðZ2ða; tÞÞ� r2ðZ1ða; tÞÞÞ

þ ðr2ðZ4ða; tÞÞ� r2ðZ2ða; tÞÞÞ
�

þ
X
a

pðaÞ�Rða; tÞ
wðtÞ

�
ðr2ðZ3ða; tÞÞ� r2ðZ1ða; tÞÞÞ

þ ðr2ðZ5ða; tÞÞ� r2ðZ3ða; tÞÞÞ
�

þ
X
a

pðaÞ½�Zðaþ 1; tþ 1Þ� �Zðtþ 1Þ�2

þ
P

a pðaÞ�Rða; tÞ
wðtÞ ½�Zð1; tþ 1 jaÞ� �ZðtÞ�2

� �
:

eqn 8

The terms in square brackets in the first two rows of both equa-

tions describe differences in the mean (7) and variance (8) between

pairs of character number density distributions (Table 2). In both

cases the first row describes contributions via survival and onto-

genetic development while the second row captures contributions via

recruitment and reproductive allocation. The remaining terms deal

with contributions to change via fluctuations in the age-structure. In

what follows we focus on change in the mean (7), although the inter-

pretation is the same for the variance and for any higher central

moment of interest.

The first term on the right in the top row of (7) describes how via-

bility selection shifts the character mean; it is a viability selection

differential. The second term on the right of (7) in the top row

describes the average rate of ontogenetic development of the charac-

ter among survivors. In the second row of (7) the first term in square

brackets is a fertility selection differential, while the second term

describes the average difference between offspring and parental

character values (reproductive allocation). The terms outside square

brackets in the first two rows of (7) provide the demographic

weights needed to average the terms in square brackets across age-

classes. These first two rows in (7) describe how within age-class

processes change the mean value of the character. The bottom row

describes how differences between age-classes alter the character

number density distribution. In (7) the first term in the bottom row

on the right describes how differences in mean survival rates

between age-classes alters the character number density distribution,

while the second term describes how differences in reproductive

rates between age-classes contribute to change. These terms will be

non-zero in populations at equilibrium if there are survival and fer-

tility differences between age-classes that are independent of the

character.

Calculating life history and quantitative genetic quantities

Our model can also be used to calculate life history descriptors like

generation time and net reproductive rate, as well as an estimate of

the character heritability and selection on the character via lifetime

reproductive success. To calculate these quantities we first show how

to track the performance of cohorts in terms of survivorship and fer-

tility.We use our integral operator notation.

We track cohort dynamics by iterating eqn (1d). Between ages 1

and 2, changes in a cohort are described by the integral operator
~Gð1; tÞ ~Sð1; tÞas in (1c) and (1d). Between ages 2 and 3, the corre-

sponding operator is ~Gð2; t þ 1Þ ~Sð2; t þ 1Þ, and so on. String these

together to obtain

~Lð1; tÞ ¼ ~I; eqn 9

~Lðaþ 1; tþ 1Þ ¼ f ~Gða; tÞ ~Sða; tÞg � ~Lða; tÞ: eqn 10

~I is the identity kernel (continuous formulation) or identity matrix

(discrete formulation), and ~L is a kernel (continuous formulation) or

matrix (discrete formulation) describing survivorship. In the continu-

ous notation of Easterling et al. (2000) the iteration in (10) is as

follows,

Lð1; t; z j z0Þ ¼ dðz� z0Þ eqn 11

Lðaþ 1; tþ 1;z jz0Þ ¼
Z
dxGða; t;z jxÞSða; t;xÞLða; t;x jz0Þ; eqn 12

where d(z ) z¢) is theDirac delta function. In discrete space theDirac

delta function is the Kronecker delta.
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The expected number density of offspring with character value z

produced at age a by a parent born at time t with a character value z¢
is denotedM(a,t + a ) 1,z | z¢) and is given by

~Mða; tþ a� 1Þ ¼ ~Dða; tÞ ~Rða; tÞ � ~Lða; tþ a� 1Þ: eqn 13

To find the lifetime reproduction ~MLof a parent born at time twith

character value z¢, we add together offspring produced at all ages

through some (possibly large) maximum ageA,

~MLðtÞ ¼
XA
a¼1

~Mða; tþ a� 1Þ: eqn 14

A cohort born at t with a character number density distribution

nða ¼ 1; t; zÞ ¼ ~nð1; tÞproduces at age a an offspring number

density distribution ~Mða; t þ a � 1Þ~nð1; tÞ, and a lifetime offspring

distribution ~ML~nð1; tÞ.
We can use these equations to calculate a number of life history

quantities. Such calculations make sense in a constant, density-inde-

pendent environment, when rates are time-independent. In our

model, age-dependence complicates the known methods (Ellner &

Rees 2006).We define generation timeT by a frequently used identity

(Caswell 2001), which is tautological but may be useful. We calculate

generation time T by the identity R0 ¼ erT where r is the asymptotic

growth rate and R0 is the net reproductive rate. R0 is the dominant

eigenvalue of the operator ML in (14): recall that this operator

describes lifetime reproduction. The asymptotic growth rate

describes the growth rate when the population has a stationary age

and character density distribution. In the latter, denote the character

number density distribution of newborns (age class 1) by ~uðzÞ; recall
the integral operators ~Mða; t � a þ 1Þ in eqn (13) that describe the

number density of offspring of a cohort when that cohort reaches age

a. In the stationary state these operators do not depend on time so we

can write them simply as ~MðaÞ. Then r is the solution to the integral

equation (U. Steiner, S. Tuljapurkar & T. Coulson, unpublished)

X
a

e�ra ~MðaÞ~u ¼ ~u: eqn 15

In practice no one is going to solve these integral equations.

Insteadwe use a discrete matrix approximation and turn the integrals

into sums, as we illustrate in the next section.

We now turn to the breeder’s equation. The breeder’s equation has

been widely used to understand phenotypic change of heritable char-

acters (Bulmer 1980; Lande & Arnold 1983). Specifically it describes

the response to selection defined as the per generation change in the

mean of the breeding value distribution. A breeding value of a

character describes the additive genetic worth of a parent for that

character.

The breeders equation, in the univariate form considered here,

contains two terms – a selection differential between the character

and lifetime reproductive success ( ~ML)and a character heritability,

h2. The heritability is the ratio of the additive genetic variance Va to

the phenotypic variance r2(Z). Heritabilities and additive genetic

variances can be estimated in many ways. The classic biometric

approach we use here is through a regression of daughter character

values measured at age a against maternal character values also at

age a. Twice the slope of the regression line is the character heritabil-

ity (Falconer 1960). This approach is entirely statistical; hence the use

of the term biometric heritability. As discussed by Jacquard (1983)

the connection between this biometric heritability and any underlying

genetic variation is not simple, even though it is often assumed to be

so (see discussions in Willis, Coyne & Kirkpatrick 1991; Kruuk

2004).

To estimate the biometric heritability of body mass measured at

age 1, we need to consider parents born into different size classes and

track the number density distribution of the stage classes of offspring

born to these parents at each age in the life course. To do this we start

with a cohort of newborns who progress through the life cycle to

become parents. This cohort of newborns is described by a number

density over character values, ~nð1; tÞ ¼ nð1; t; zÞ, which we iterate

forwards to track the number density distribution of offspring pro-

duced. We consider all offspring produced over a lifetime. From

eqn (14) we see that the joint number density distribution of offspring

character value x and parental character value y must be propor-

tional to

~MLðx j y; tÞnð1; t; yÞ:

In a one sex model, the regression of offspring trait value Zo on

parental trait valueZp has a slope that equals half the heritability,

h2

2
¼ CovðZoZpÞ

VarZp
: eqn 16

From the joint number density distribution we have

lp ¼
R
dy ynð1; t; yÞR
dy nð1; t; yÞ ; eqn 17

lo ¼
R
dxdyxMLðx j y; tÞnð1; t; yÞR
dxdyMLðx j y; tÞnð1; t; yÞ

; eqn 18

CovðZoZpÞ ¼
R
dxdyðx� loÞðy� lpÞMLðx j y; tÞnð1; t; yÞR

dxdyMLðx j y; tÞnð1; t; yÞ
; eqn 19

VarZp ¼
R
dyðy� lpÞ2nð1; t; yÞR

dy nð1; t; yÞ : eqn 20

The first two equations above yield the mean character values of

parents and offspring, respectively. The third, eqn (19), is the impor-

tant new relationship here and shows that the character number

density distributions from the model can be used to compute the

parent-offspring covariance that is the key to determining biometric

heritability. Eqn (20) yields the variance among parents. We can now

compute half the heritability h2 using eqn (16).

It is important to note that the value of h2 does not depend on the

number of parents that we start with as newborns, only on their char-

acter distribution [because the number cancels out of the ratio in

(16)]. Several aspects of biometric heritability can be explored using

our analysis. First, we can compare the equilibrium heritability

obtained by starting with a stable character density distribution of

newborns (i.e. ~nð1; tÞ ¼ ~u)with time-dependent values for cohorts

who are observed over their reproductive lives. Such a comparison

will illuminate the effects of environmental change on life history

transitions. Second, we could compute age-dependent biometric her-

itabilities at each age a by repeating the covariance calculation in

eqn (19) but considering only offspring produced at age a– we will do

this in future work. This would allow us to examine the effects of age,

a variable that is often factored out of the usual models for estimating

heritability by treating age as a covariate.
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The equations above show how awide range of population biology

quantities can be calculated from IPMs. Implementation of the

model requires us to approximate the model in matrix form

(Easterling et al. 2000). In the next section we explain how this is

done.

Numerical implementation

The continuous character-demography functions on which IPMs are

built are identified through statistical analyses (Easterling et al.

2000). Predicted values from these continuous functions can be calcu-

lated for very small-width discrete bins, and these values used to con-

struct a high dimensional transition matrix. An IPM will only

accurately capture the dynamics of a population and a character

distribution if the statistical functions used to construct the model

accurately capture observation. As with any statistical analysis, the

identification of accurate and appropriate functions requires good

data and biological knowledge of the system under study. Let us

assume that functions have been identified. How would our IPM

[(1a) and (1b)] look inmatrix form?

To write our discretized age-stage IPM as one large matrix (Lebr-

eton 1996) requires a note on notation. The age-specific continuous

number density distributions nða; t; zÞ ¼ ~nða; tÞ are combined into

one vector n(t). The ith element of this vector represents the number

of individuals in age-class a and character class j. Each possible char-

acter class is included within each age even if no individual of age a

can have that value. For example, it may be impossible for a new

recruit to have an average adult body mass. However, there is an ele-

ment in n(t) at this impossible character value but this element will

always be zero. If we have nine age-classes and 100 character classes

n(t) will consequently be of length 900, with elements 1–100 repre-

senting age class 1 (n(1,t)), elements 101–200 representing age class 2

(n(2,t)) etc.

A set of square matrices is used to iterate n(t) to n(t + 1) with

matrix elements equal to predicted values of S(a,t,z), R(a,t,z) (both

diagonal matrices),G(a,t,z | z¢) andD(a,t,z | z¢) calculated at the mid

point value of each stage class. We also define a vector z consisting of

these mid-point values of each stage-class (Easterling et al. 2000). In

our age-character model z consists of the list of mid-point values for

phenotypic classes repeated by the number of age-classes. The vector

z is required to calculate quantities describing character dynamics

(Table 2).

An age-structured IPM is now approximated inmatrix form as,

nðtþ 1Þ ¼ ½CDðtÞRðtÞ þWGðtÞSðtÞ�nðtÞ: eqn 21

Each of the matrices S(t), R(t), G(t), D(t), W and C are square

‘block’ matrices consisting of an array of age-specific matrices

defined above. An age-specific sub-matrix of this large matrix is

described with indices (a,t). The S(t) and R(t) matrices are diagonal

describing survival and recruitment rates of individuals in each age-

character class – they are discretized versions of S(a,t,z¢) and

R(a,t,z¢). Each sub-matrix G(a,t) describes transition rates between

stage classes within an age-class among survivors, except it does not

yet age the survivors by 1 year (see below). Each sub-matrix D(a,t)

describes the transition rate from maternal stage to offspring stage,

except that it does not yet place offspring into the age-class of new

recruits. See the online appendix for a figure displaying the form of

these matrices.

The matrices C and W describe age transitions. C moves offspring

out of the maternal age class into the new recruit class (aged 1) – the

top row of sub-matrices of C are all identity matrices while all other

sub-matrices contain only zeros. W acts in a similar manner to C but

ages survivors.W andC are time invariant. The functionsD(a,t,z | z¢)
are approximated by CD(t), while the functions G(a,t,z | z¢) are

approximated by WG(t). We will report quantities at equilibrium, so

now drop the index t.

The dominant eigenvalue of (21), k, is the population growth rate

(Lebreton 1996), and the left and right eigenvectors associated with k
are respectively the reproductive value and stable age-character dis-

tribution. Our integral operator notation demonstrates it is straight-

forward to rewrite our equations for the age-structured Price

equation and the breeders equation in matrix form. Having calcu-

lated quantities in these equations we next explore how they are

related to one another. We first construct a matrix and calculate key

quantities at equilibrium. Next, we independently perturb parameter

values in the character-demography functions and examine how each

perturbation alters each of the quantities. This is a form of sensitivity

analysis (Caswell 2001). We perturb function parameters rather than

specific matrix elements because we believe that environmental

variation and evolution will change these functions. We chose not to

centre functions prior to perturbation because most published

character-demography functions are not centred.

DATA

The population of Soay sheep Ovis aries living in the 250 ha Vil-

lage Bay catchment of the Island of Hirta in the St. Kilda archipel-

ago, Scotland, has been studied in detail since 1985 (Clutton-Brock

& Pemberton 2004). There are no sheep predators on the island,

and no interspecific competition for forage from other large herbi-

vores meaning the population is only food limited. Each spring

newborn individuals are caught and uniquely marked with ear tags

within hours of birth. Mortality tends to occur during the winter

months. Regular mortality searches during this period result in the

majority of carcasses being found, normally within a day of death.

Since 1986, each spring, summer and autumn, 10 censuses of the

population are attempted. Over 95% of individuals seen in these

censuses are identified – the unidentified individuals tend to be

transients seen on the edge of the study area (Coulson, Albon, Pil-

kington & Clutton-Brock 1999). The birth, death and census data

are used to provide a list of which individuals are living perma-

nently within the study population each August. The population

size in each year is consequently known accurately. The population

exhibits periodic crashes when up to 70% of the population can

die (Coulson et al. 2001). Maternity is inferred from observations

of birth or suckling. Each August a team catches as many individu-

als as possible – on average 50% of the resident population. Any

unmarked individuals that are caught are marked. Each time an

individual is caught blood samples, faecal samples and a range of

phenotypic data including body mass are collected. Observed body

mass means and variances both within and across age-classes are

given in Table 3.

We used data on life history and body masses collected from the

female component of the population between 1986 and 2008.

Although we focus on body mass, any morphological, physiological,

genetic or behavioural character could be used in our approach. We

consider four age-classes identified from previous analyses of survival

rates: lambs, yearlings, prime-aged adults aged 2–6 years, and

senescent individuals aged over seven (Coulson et al. 2008). A

detailed description of data collection protocols is provided

elsewhere (Clutton-Brock & Pemberton 2004).

Individual body mass, survival, fertility and offspring mass data

were used to identify functions required for parameterization of
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integral projection models. We fitted generalized linear models with a

binomial error structure to annual individual survival, reproduction,

and, for those individuals that bred, whether one or two recruits were

produced. We defined reproduction as whether an individual bred

and produced offspring between t and t + 1 that survived to enter

the population in the August after birth (t + 1) (Coulson et al.

2001). The litter size (twinning) function described the number of

recruits each female produced (1 or 2). Growth rate functions were

estimated by using multiple linear regression models of mass in year

t + 1. Reproductive allocation functions were estimated through

multiple linear regression of the mass at t + 1 of offspring produced

between t and t + 1 that recruited to the population in t + 1. There

is considerable temporal variation in demographic rates (Coulson

et al. 2001). We fitted year class as a categorical variable in all models

to correct for this variation. Obviously body mass was fitted as an

independent term in all models. We fitted separate models for each of

the four age classes.

The resultant character-survival functions S(a,t,z) are of the form

exp (a + bZ)/(1 + exp (a + bZ)) where a and b are obtained

from logistic regressions for survival. The functions R(a,t,z) are

obtained by combining the reproduction and litter size (twinning)

functions, both which are of the same form as the logistic models for

survival. If we define the twinning functions as /(a,t,z) and the fertil-

ity functions as F(a,t,z) then R(a,t,z) ¼ F(a,t,z)(1 + /(a,t,z)). To
estimate growth kernels G(a,t,z | z¢) it is necessary to combine the

function describing mean body size at year t + 1 given body size in

year t with a function describing the variance around these associa-

tions and scaling so that all transition rates out of an age-stage class

sum to unity. The variance function is identified by regressing the

squared residuals around the mean body mass function against body

mass (Easterling et al. 2000). We found no compelling evidence for

nonlinearity in these functions so used linear regressions. We define

the intercept and slope of the linear regression of body mass in year

t + 1 against body mass in year t as al and bl and the intercept and

slope of the variance function as ar and br. If we next define

rðzÞ ¼
ffiffi
ð

p
ar þ brzÞand l(z) ¼ al + blz, the probability density

function describing transition rates between z and z¢ is,

Gða; t; z j z0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prðzÞ

p e�ðz
0�lðzÞÞ2=2rðzÞ2 : eqn 22

The same logic is used to define the D(a,t,z | z¢) functions for

each age-class. We next define the integration limits in (1a) and

(1b) that also provide the smallest and largest values of z. The

smallest observed August female sheep mass was a recruiting lamb

weighing 2Æ9 kg and the largest was from a 34Æ2 kg adult. When

constructing S(t), R(t), G(t) and D(t) we generated 100 phenotypic

classes ranging from 0 to 37Æ5 kg as this provided a good approxi-

mation to the continuous functions (Easterling et al. 2000):

decreasing bin size further had no influence on all quantities calcu-

lated to 2 decimal places. We ensured that transition probabilities

out of class j for the kernels D(a,t) and G(a,t) summed to one by

dividing each element by the sum of estimated transition probabili-

ties. All statistical analyses and model construction and analysis

were conducted in (R Development Core Team 2009). Code for

constructing IPMs utilized functions provided by Ellner & Rees

(2006).

For the matrix approximation of the IPM we calculated the fol-

lowing quantities at equilibrium (we consequently drop the index t):

asymptotic population growth, k; mean character value at the popu-

lation level �Zand within each of our four age classes �ZðaÞ for a ¼
1,…,4; variance in character value at the population level r2(Z) and
within each of our four age classes r2(Z(a)) for a ¼ 1,…,4; the contri-

butions of viability selection, fertility selection, growth among survi-

vors, reproductive allocation and the demographic weights to D �Z

and Dr2(Z) summed over age-class (Table 3); generation length T;

heritability of body mass h2; the selection differential between body

mass as a recruit to the population and lifetime reproductive success.

We compared these model predictions to the same quantities calcu-

lated from the individual-based data or with previous published esti-

mates (Table 3).

Intercepts and slopes of each of the statistical functions used to

parameterize the IPMs were independently perturbed by 1% and

new IPMs and matrix approximations constructed. The direction of

each perturbation was chosen so as to increase k. The perturbed

Table 3.Observed and predicted quantities. Predictions obtained assuming equilibrium age-character structure

Quantity Observed Predicted Quantity Observed Predicted

k 1Æ05a 1Æ03 T 4Æ09b 5Æ85
�Z 19Æ15 19Æ30 r2(Z) 28Æ21 28Æ19
�Zða ¼ 1Þ 12Æ55 12Æ11 r2(Z(a ¼ 1)) 6Æ17 7Æ07
�Zða ¼ 2Þ 17Æ41 17Æ08 r2(Z(a ¼ 2)) 5Æ92 5Æ91
�Zða ¼ 3Þ 22Æ67 22Æ70 r2(Z(a ¼ 3)) 7Æ66 7Æ01
�Zða ¼ 4Þ 23Æ95 23Æ79 r2(Z(a ¼ 4)) 8Æ03 6Æ75

h2 0Æ18 0Æ20 covðzð1Þ;MLð1;tÞÞ
LRSð1;tÞ

1Æ17c 1Æ14

P
a
pðaÞ �Sða;tÞ

wðtÞ ½ �Z2ða; tÞ � �Z1ða; tÞ� 0Æ22d 0Æ21
P

a
pðaÞ �Sða;tÞ

wðtÞ ½r2ðZ2ða; tÞÞ � r2ðZ1ða; tÞÞ� )0Æ41 )0Æ30
P

a
pðaÞ �Sða;tÞ

wðtÞ ½ �Z4ða; tÞ � �Z2ða; tÞ� 1Æ08 0Æ96
P

a
pðaÞ �Sða;tÞ

wðtÞ ½r2ðZ4ða; tÞÞ � r2ðZ2ða; tÞÞ� )0Æ05 )0Æ04
P

a
pðaÞ �Rða;tÞ

wðtÞ ½ �Z3ða; tÞ � �Z1ða; tÞ� 0Æ07 0Æ07
P

a
pðaÞ �Rða;tÞ

wðtÞ ½r2ðZ3ða; tÞÞ � r1ðZ2ða; tÞÞ� )0Æ05 )0Æ03
P

a
pðaÞ �Sða;tÞ

wðtÞ ½ �Z5ða; tÞ � �Z3ða; tÞ� )2Æ33 )2Æ41
P

a
pðaÞ �Rða;tÞ

wðtÞ ½r2ðZ5ða; tÞÞ � r1ðZ3ða; tÞÞ� )0Æ50 )0Æ44

Other terms in (7) 1Æ25 1Æ17 other terms in (8) 1Æ08 0Æ81

aArithmeticmean of
Nðtþ 1Þ
NðtÞ .

bCalculated from the Soay sheep life table.
cCalculated from individual-based data.
dAll observed values in (7) and (8) calculated from individual-based data (Coulson &Tuljapurkar 2008; S. Tuljapurkar &T. Coulson,

unpublished).
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matrices were then used to calculate the the proportional change in

the equilibrium values listed above. Because the S(a,t,z) and R(a,t,z)

functions were on the logistic scale we rescaled perturbations to the

same scale as theG(a,t,z | z¢) andD(a,t,z | z¢) functions.

Results

Associations between body mass and: (i) survival; (ii) fer-

tility; (iii) next year’s body mass among survivors; and

(iv) offspring body masses when they recruit to the popu-

lation are displayed in Fig. 1. We do not display the

body mass-twinning functions or the functions describing

variances around (iii) and (iv). Parameter values for all

functions are in the online appendix. Our focus in the

results that follow is on the ecological and evolutionary

descriptors of the population at equilibrium. We start by

comparing model predictions with observations, then

describe how equilibrium predictions change as model

parameters are altered.

In general, predictions of the quantities we estimated

from the matrix approximation of the IPM corresponded

well with observation (Table 3). The largest mismatch is

between observed and predicted generation time. This

mismatch occurs because empirical estimates of genera-

tion time are affected by environmental variation (see

appendix 1 in Clutton-Brock & Pemberton 2004) that

contributes to cause periodic crashes in the sheep popula-

tion when up to 70% of the population dies (Coulson

et al. 2001). Our deterministic and density-independent

model does not capture this variation. Our model cap-

tured age-specific mean body mass very well, but over-

estimated the standard deviation of body mass in all age-

classes (Fig. 2). This mismatches arises because our nor-

mal distribution describing the variance function around

G(a,t,z | z¢)eqn (22) does not exactly capture the observed

transition rates. As our goal here is to illustrate the

methods and their uses, not accurate prediction, we con-

tinue analysis of this model despite the mismatch in the

variances.

Our estimate of the character heritability was consistent

with published estimates obtained through use of the animal

model (Table 3). We did not correct for common environ-

ment (includingmaternal) effects in our analyses but describe

how such correction could be conducted in the discussion.
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Fig. 1. Shapes of the statistical functions between body mass and survival, fertility, mean growth rates and mean reproductive allocation within

each of the four age-classes used to parameterize the integral projection model. Twinning rate functions and body-mass variance functions (see

text) are not displayed. Points represent raw data; lines represent predictions from regressions including year class to correct for temporal varia-

tion. In the bottom eight plots the function y ¼ x is also plotted.
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PERTURBATION

We now turn to the effect of perturbations on the popu-

lation at equilibrium. In Fig. 3 we show how perturba-

tions impact six quantities: the population growth rate,

the mean and variance of the character number density

distribution, the biometric estimate of the character heri-

tability, the generation length and the total strength of

viability selection across the life cycle. In Fig. 4 we focus

on joint change in four quantities: population growth,

the mean of the character, the character heritability and

the strength of viability selection. Below we focus on key

findings relevant to the issues we raise in the discussion;

descriptions of how specific results arise can be found in

the online appendix.

Population growth k (also mean fitness in deterministic

environments), unsurprisingly, increased with increasing sur-

vival and fertility rates, with increasing growth rates that

move individuals more quickly into the fertile ages, and with

increase in mean offspring size. Generation time (which we

compute via growth rate r and net reproductive rate R0)

responded differently: it was not sensitive to early survival,

decreases when early fertility increased, and increased with

senescent fertility and survival; these changes can be under-

stood in terms of the offsetting increases in r and R0. The

changes we found in the mean character value and the overall

strength of viability selection are consequences of the chang-

ing age-stage structure of the population. When early sur-

vival rates increase or growth rates increase, the population

structure shifts to include a higher proportion of larger

older individuals; increasing early fertility has the opposite

effect. A similar, but smaller, effect was observed through

perturbing parameters in the mean function in the reproduc-

tive allocation kernels D(a,t,z | z¢). For both types of kernel,

increasing parameters generates larger individuals that

increases survival and fertility rates and consequently

changes both population growth and age-stage structure.

Estimates of heritability were also influenced by the

same functions as was population growth, although the

direction of change was often different. To understand

these effects note that the covariance between parent and

offspring can change with age (along with the kernel D).

Thus the covariance will be age-specific, and the overall

heritability that we estimate is an average of age-specific

covariances. Increased survival rates imply that an indi-

vidual’s total reproductive output is more dispersed with

respect to its age, and as the slope of the mean growth

rate functions tend to unity the total reproductive output

becomes dispersed over a wide range of sizes. The result

is to lower the overall parent-offspring covariance and

reduce heritability. Increasing early fertility, on the other

hand, tends to reduce the age-dispersion of lifetime repro-

duction, and thus increases heritability. It is noteworthy

that the parent-offspring covariance and heritability are

most sensitive to perturbations of the growth rates of

parents between birth and ages at reproduction (Fig. 3).

Growth rates in the sheep are strongly influenced by tem-

poral environmental variation (Clutton-Brock & Pember-

ton 2004), which suggests more accurate estimates of

heritability could be obtained if environmental variation

in growth rates were corrected for in statistical analyses.

Perturbing parameters in the variance functions used to

construct the transition kernels ~Dða; tÞ and ~Gða; tÞ had trivi-

ally small effects on all quantities with the exception of viabil-

ity selection, where effects were just small. Perturbing these

parameters in the ~Gða; tÞ kernel influences rates of stasis

within a character class: an increase in the intercept decreases

stasis. If individuals are likely to remain within a character

class throughout life (high stasis), this is interpreted as

persistent individual differences. Increasing the slope of the
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distribution, while black numbers repre-

sent the same quantities for the predicted

distribution.
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function decreases rates of stasis amongst individuals with

larger character values (i.e. there is greater stasis at some

character values than others).

Figure 3 demonstrates that a small perturbation to a func-

tion parameter can act to increase estimates of some quanti-

ties while simultaneously decreasing others. Patterns of

change in pairs of quantities are not always in the same direc-

tion when different parts of the demography are perturbed.

Figure 4 shows how a wide range of different joint outcomes

can be observed depending on which functions, and parame-

ters within functions, are altered. Nearly all types of joint

dynamic are possible: in nearly all cases an increase in one

quantity can go hand-in-hand with either a decrease or an

increase in another quantity. This suggests that environmen-

tal change can theoretically generate a very wide range of

eco-evolutionary dynamics.

Discussion

In this paper we first demonstrate howmany key quantitative

genetic quantities including biometric heritability, selection

differentials and terms in the age-structured Price equation

can be calculated from age-stage-structured models. Age-

stage-structured models are a powerful tool already widely

used in life history theory and population ecology. Demon-

strating how they can be used to calculate quantitative

genetic quantities allows life history and quantitative charac-

ter evolution and population dynamics to be examined within

the same formal framework. Application of this framework

to Soay sheep demonstrates the ease with which models can

be constructed and analysed. As well as providing specific

insight to the Soay sheep system, our approach reveals

that change to any one aspect of the character-demography
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functions in the model can simultaneously influence several

characteristics of the population. Perturbation of different

character-demography functions can generate a wide range

of eco-evolutionary dynamics.

HERITABIL ITY ESTIMATES

The heritability we calculate is based on the phenotypic

covariance between parents and their offspring. We calculate

the parent-offspring phenotypic correlation by following the

fate of each stage-class within a cohort of new recruits to the

population, recording the number density distribution of

offspring trait values produced by this cohort at each age.

The ~Gða; tÞ operator describes mixing: how individual stage

classes at age a at time t can contribute density to multiple

stage classes at age a + 1 at time t + 1. The ~Dða; tÞ operator
describes another kind of mixing: how individual stage

classes among age a mothers contribute density to multiple

stage classes among age 1 offspring at time t + 1.

The speed at which mixing happens within the IPM influ-

ences the estimates of the heritability of the character. The

degree of mixing is determined by both the slope and varia-

tion around the ontogenetic and reproductive allocation ker-

nels (Fig. 1). The closer the mean slope of these kernels is to

zero and the greater the variance around these slopes, the fas-

ter the degree of mixing. If mixing is very rapid then the heri-

tability will be small. This occurs because any character value

for a cohort produces a similar number of offspring across all

possible offspring character values. If mixing occurs slowly

then the estimate of the heritability will be high. Inmatrix ter-

minology mixing between stages means a matrix is ergodic

and irreducible: trajectories from one stage-class to all others

are possible, even if it takes many time steps for descendants

of an individual born into stage-class j to be represented in all

possible stage classes.

What does this mixing imply for a heritable quantitative

character? Because complex quantitative characters are influ-

enced by large numbers of loci and environmental variation,

a genotype at a locus can be present in individuals with a wide

range of character values. This is because, in non-haploid

systems, if large numbers of multi-allelic loci influence the

character there will be a very large number of genes that
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influence the trait – perhaps eachmulti-locus genotype within

a population will be unique. Given that genetic background

experienced by a genotype at a locus (Schuetz et al. 2000),

epistasis (Goodnight 1988), the non-genetic developmental

environment (Parker & Begon 1986) and indirect genetic

effects (Wolf et al. 1998) all influence how a genotype at a

locus contributes to the development of quantitative charac-

ters, we expect the genotype-phenotype map to be one-to-

many rather than one-to-one. A consequence of a single

genotype potentially being expressed in multiple different

character values is that predictions of evolutionary change

using quantitative genetic parameters like the biometric heri-

tability for characters determined by large numbers of genes

are unlikely to provide predictions of evolutionary change

beyond a generation (see also Lande & Arnold 1983). The

additive genetic variance estimated from statistical methods

is likely accurate for one period only, but long-term evolu-

tionary change depends upon the genetic details, including

the effects of recombination (Turelli & Barton 1994).

Our heritability estimates may not solely reflect additive

genetic variance of the character. We estimate heritabilities

using a form of parent-offspring regression. Our estimates of

heritability will include contributions from maternal effects,

non-additive genetic variance and other components of vari-

ance that can be corrected for using the animal model (Bul-

mer 1980). It would prove useful to be able assess how each

of these processes contribute to the quantities we calculate

within our framework. This could be achieved by comparing

results from IPMs parameterized with statistical functions

designed to correct for specific components of the variance

with those parameterized from statistical models that do not

make such corrections. If statistical approaches appropri-

ately correct for all sources of variance that can influence

mother-offspring phenotypic covariances – for example per-

manent environment effects and the additive genetic variance

– we would expect the slope in the reproductive allocation

functions (Fig. 1) estimated from these regressions to be flat.

Although we did not correct for permanent maternal effects

in our estimates of heritability it is noteworthy that our esti-

mate matched remarkably well with those obtained from

application of the animal model. This is perhaps not surpris-

ing: despite the advantages the animal model offers over par-

ent-offspring regression it is not unusual for heritability

estimates obtained using the two approaches to be of similar

magnitude (Kruuk 2004; Akesson et al. 2008).

MODEL PERFORMANCE AND JOINT DYNAMICS

In general predictions from our IPM matched observed esti-

mates reasonably closely. Our statistically identified charac-

ter-demography functions do a good job of capturing the raw

association in Fig. 1. They do not attempt to correct for pro-

cesses like density dependence and environmental drivers

that generate these patterns. If correction for a specific pro-

cess, like density-dependence, in the statistical analyses used

to parameterize an IPM results in a substantial deterioration

in the correspondence between observation and prediction

then it can be inferred that this process is influential in gener-

ating observed dynamics. Similar logic was used by Coulson

et al. (2008) to assess the contribution of density-dependence

and environmental variation to the population dynamics of

the Soay sheep system.

We next examined how perturbing model parameters

influenced the quantities we calculated. Perturbing any one

function parameter simultaneously influenced estimates of

all quantities we examined. This finding is consistent with

field observations showing that populations respond in

contrasting ways to environmental change depending on

which character-demography association is altered. For

example, a decrease in body mass occurred with a con-

current decrease in population size in Bighorn sheep

(Coltman, Festa-Bianchet, Jorgenson & Strobeck 2002)

when adult body-mass survival functions were altered by

selective hunting, while a decrease in body mass with a

simultaneous increase in population size was observed in

Soay sheep when environmental change increased body

mass-survival functions and reduced body mass-growth

functions (Ozgul et al. 2009).

Our model also provides unprecedented insight into link-

ages between the fundamental parameters of population biol-

ogy. Perturbations of any part of a life cycle has downstream

effects within and across generations (Prout & McChesney

1985; Roach &Wulff 1987) with multiple ecological and evo-

lutionary consequences (Fig. 3). In order to understand the

consequences of perturbing a parameter it is necessary to

investigate how it alters the transition rates between charac-

ter stages across the entire life cycle. Our analyses demon-

strate how complex the consequences of a single perturbation

can be and support the argument that an understanding of

ecological and evolutionary dynamics requires examination

of character-demography associations across the entire life

cycle (see also Prout 1971; Caswell 2001; Tuljapurkar 1990;

Charlesworth 1994; Benton & Grant 2000; Ellner & Rees

2006). For example, in the Soay sheep, we find that increasing

fertility rates early in life would lead to both a decrease in

mean size and a decrease in selection for larger size. It would

be impossible to predict this response by considering only a

single character and a single fitness component, or only a

scalar measure of individual lifetime fitness. Statistical

analysis of single character-demography associations is

certainly valuable, but predictions must consider all other

character-demography associations in the life cycle.

FUNDAMENTAL FUNCTIONS

A distribution can be modified by removing density from it,

adding density to it, and moving density within it. In the

absence of dispersal, the four functions we describe (charac-

ter-survival, character-fertility, character-ontogenetic devel-

opment and character-reproductive allocation) are the only

biological processes that change density. All the quantities

we calculate, and indeed all meaningful quantities that can be

calculated within population biology, derive from these func-

tions. We believe that continued development of structured
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models will prove fruitful in understanding how fundamental

parameters in population biology are influenced by processes

as diverse as maternal effects and persistent individuals dif-

ferences, environmental and demographic stochasticity, den-

sity and frequency dependence, genotype-by-environment

interactions and phenotypic plasticity.

Conclusions

Our approach (and all IPMs) require the statistical analysis

of data routinely collected by field and laboratory biologists

to parameterize character-demography associations – there

are numerous systems where sufficient data exist (Jones et al.

2008). In addition to developing models for other systems,

possible extensions include: the incorporation of density-

dependence, environmental stochasticity, multivariate char-

acters, and explicit genotype-phenotype maps; developing

models for continuous time and for two sexes; examination

of how incorporation of random effects in statistical models

influence predictions; integration with adaptive dynamics

methods; and derivations of analytical sensitivities. These

extensions are achievable with approaches already developed

for IPMs and matrices (Charlesworth 1994; Tuljapurkar,

Horvitz & Pascarella 2003; Tuljapurkar & Haridas 2006;

Caswell 2009; Rees & Ellner 2009).

Change in a character, or population size within a popula-

tion of a single species, can have effects elsewhere within the

ecosystem through altering patterns of interspecific competi-

tion, rates of predation and causing trophic cascades (Fortin

et al. 2005). So although our focus here has been limited to a

single population, insight into multi-species systems could be

obtained through investigating: (i) when an alteration to a

character-demography association within a species has

knock on effects; and (ii) biotic and abiotic factors that gener-

ate change in character-demography associations. So

although we focus on a single species, the processes we

describe are relevant for change in communities and eco-

systems. The work we develop here, which extends the frame-

work proposed by Coulson et al. (2006) and builds from the

important insights of Easterling et al. (2000); Ellner & Rees

(2006) and Lebreton (1996), shows how demography is cen-

tral to all endeavours in population biology. To paraphrase

Metcalf & Pavard (2007), all population biologists should be

demographers.
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Appendix S1. Additional interpretation of results displayed in

Figure 3.

Fig. S1. Structure of the S(t),R(t),G(t),D(t),W andCmatrices. Grey

cells represent elements that can be non-zero while elements in white

are always 0. The square highlighted with the dotted lines represent

matrix elements associatedwith one age-class (age 2).
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